You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Using Docker in Process Level Isolation for Heterogeneous Computing on GPU Accelerated On-Board Data Processing Systems

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

12th IAA Symposium on Small Satellites for Earth Observation


Abstract

The technological advancements make the intelligent on-board data processing possible on a small scale of satellites and deep-space exploration spacecraft such as CubeSats. However, the operation of satellites may fall into critical conditions when the on-board data processing interferes strongly to the basic operation functionalities of satellites. In order to avoid these issues, there exist techniques such as isolation, partitioning, and virtualization. In this paper, we present an experimental study of isolation of on-board payload data processing from the basic operations of satellites using Docker. Docker is a leading technology in process level isolation as well as continuous integration and continuous deployment (CI/CD) method. This study continues with the prior study on heterogeneous computing method, which improves the schedulability of the entire system up to 90%. Based on this heterogeneous computing method, the comparison study has been conducted between the non-isolated and isolated environments.

Bibtex

@inproceedings{Tsog5667,
author = {Nandinbaatar Tsog and Mikael Sj{\"o}din and Fredrik Bruhn},
title = {Using Docker in Process Level Isolation for Heterogeneous Computing on GPU Accelerated On-Board Data Processing Systems},
month = {May},
year = {2019},
booktitle = {12th IAA Symposium on Small Satellites for Earth Observation},
url = {http://www.es.mdu.se/publications/5667-}
}