You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

New work on radiofrequency electric and electromagnetic leakage hazards for operators safety assessments

Research group:


Publication Type:

Conference/Workshop Paper

Venue:

Medicinteknikdagarna 2019


Abstract

Various medical and industrial equipment types with electric fields having frequencies in the range 13 to 40 MHz have a long history. The relative simplicity of the generators and applicators (i.e. the assembly which is adapted for the treatment) have led to equipment manufacturing by many small companies having insufficient knowledge about human exposure hazards. The international regulations on maximum allowed exposure are not well-developed and mainly concern limits of the measured electric field, so-called reference levels, which are set to low values considered to be safe under all possible conditions. – Quite some scientific work on the field characteristics has been carried out since the 1970’s, the goal in many cases having been to motivate further research grants rather than assisting industry in improving safety by proposing more detailed regulations. In particular, researchers have used the electric field strengths as measured, without consideration of the field curvature and decay rate from the equipment, and by also using a too simplistic approach to the “power flux density” of the field emission. – As a consequence of the above, it is estimated that over 90 % of today’s operational equipment does not fulfill these simple regulations. In spite of that, very few incidents or accidents are reported. – New ongoing work by the International Electrotechnical Commission (IEC; committee 27) is now explaining this. The work is based on advanced numerical modelling of typical kinds of equipment and humans in different postures of arms and hands. Some results will be demonstrated and indicate that from five to more than twenty times stronger fields can be accepted under conditions of limited direct access to the energised equipment parts such as electrodes and rails, and proper design of the system grounding.

Bibtex

@inproceedings{Risman5694,
author = {Per Olov Risman and Nikola Petrovic and Ivan Tomasic and Maria Lind{\'e}n},
title = {New work on radiofrequency electric and electromagnetic leakage hazards for operators safety assessments},
month = {October},
year = {2019},
booktitle = {Medicinteknikdagarna 2019},
url = {http://www.es.mdu.se/publications/5694-}
}