You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Industrial Scale Passive Testing with T-EARS


industrial track

Publication Type:

Conference/Workshop Paper


IEEE Conference on Software Testing, Validation and Verification 2021


Passive testing continuously observes the system or system execution logs without any interference or instrumentation to test diverse combinations of functions, resulting in a more thorough evaluation over time. However, reaching a working solution to passive testing is not without challenges. While there have been some efforts to extract information from system requirements to create passive test cases, to our knowledge, no such efforts are mature enough to be applied in a real, industrial safety-critical context. Our passive testing approach uses the Timed - Easy Approach to Requirements Syntax (T-EARS) specification language and its accompanying tool-chain. This study reports challenges and solutions to introducing system-level passive testing for a vehicular safety-critical system through industrial data analysis, including 116 safety-related requirements. Our results show that passive testing using the T-EARS language and its tool-chain can be used for system-level testing in an industrial setting for 64% of the studied requirements. We identified several sources of false positive results and show how to tune test cases to reduce such false positives systematically. Finally, we show the requirement coverage achieved by a manual test session and that passive testing using T-EARS can find a set of injected faults that are considered hard to find with other test techniques.


author = {Daniel Flemstr{\"o}m and Henrik Jonsson and Eduard Paul Enoiu and Wasif Afzal},
title = {Industrial Scale Passive Testing with T-EARS},
note = {industrial track},
month = {March},
year = {2021},
booktitle = {IEEE Conference on Software Testing, Validation and Verification 2021},
url = {}