You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Tiny Twins for detecting cyber-attacks at runtime using concise Rebeca time transition

Fulltext:


Authors:


Publication Type:

Journal article

Venue:

Journal of Parallel and Distributed Computing


Abstract

This paper presents a method for detecting cyber-attacks in cyber-physical systems using a monitor. The method employs an abstract model called Tiny Twin, which is built at design time and is used at runtime to detect inconsistencies. Tiny Twin is a state transition system that represents the observable behavior of the system from the monitor point of view. We model the behavior of the system in the Rebeca modeling language and use Afra model checker to generate the state space. The Tiny Twin is built automatically, by abstracting the state space while keeping the observable actions and preserving the trace equivalence. For doing that we had to solve the complexities in the state space introduced by time-shifts, nondeterministic assignments and abstraction of internal actions. We formally define the state space as Concise Rebeca Timed Transition System (CRTTS), and then map CRTTS to an LTS. The LTS is then fed to a tool to abstract away the non-observable actions.

Bibtex

@article{Moradi6874,
author = {Fereidoun Moradi and Bahman Pourvatan and Sara Abbaspour and Marjan Sirjani},
title = {Tiny Twins for detecting cyber-attacks at runtime using concise Rebeca time transition},
volume = {185},
month = {February},
year = {2024},
journal = {Journal of Parallel and Distributed Computing},
url = {http://www.es.mdu.se/publications/6874-}
}