You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Improved Priority Assignment for Real-Time Communications in On-Chip Networks

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

The 23rd International Conference on Real-Time Networks and Systems


Abstract

The Network-on-Chip is the on-chip interconnection medium of choice for modern massively parallel processors and System-on-Chip in general. Fixed-priority based preemptive scheduling using virtual-channels is a solution to support real-time communications in on-chip networks. However, the different characteristics of the Network-on-Chip compared to the single processor scheduling problem prevents the usage of known optimal algorithms (e.g. the Audsley's algorithm) to assign priorities to messages. A heuristic search algorithm based approach (called the HSA) focusing on the priority assignment for on-chip communications has been presented in the literature. The HSA is much faster than an exhaustive search based solution, with a price of missing certain schedulable cases (i.e. non-optimal). In this paper, we present two undirected-graph based priority assignment algorithms, the GESA and the GHSA. In contrast to the previous work, we can decrease the search space significantly by taking the interference dependencies of different messages on the network into account. A number of experiments are generated, in order to evaluate the proposed algorithms. The results show that the GESA can always achieve higher schedulability ratios than the HSA, but may require longer processing time. On the other hand, the GHSA has the same performance as the HSA regarding the schedulability, but can significantly improve the efficiency.

Bibtex

@inproceedings{Liu4035,
author = {Meng Liu and Matthias Becker and Moris Behnam and Thomas Nolte},
title = {Improved Priority Assignment for Real-Time Communications in On-Chip Networks},
month = {November},
year = {2015},
booktitle = {The 23rd International Conference on Real-Time Networks and Systems},
url = {http://www.es.mdh.se/publications/4035-}
}