You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Deriving Verification-related Means of Compliance for a Model-based Testing Process

Fulltext:


Authors:

Barbara Gallina, Anneliese Andrews

Publication Type:

Conference/Workshop Paper

Venue:

35th Digital Avionics Systems Conference

Publisher:

IEEE

DOI:

10.1109/DASC.2016.7778046


Abstract

DO-331 is the supplement of DO-178C for model- based development. DO-331 is an objective-based guidance, which defines a set of objectives that have to be achieved for the model- based development of aeronautical software. The guidance also recommends the evidence in terms of activities and work products that should respectively be carried out and produced to meet the objectives. To explain why the evidence collected supports the claims concerning objectives achievement, manufacturers could adopt a safety case-based approach. Fail-SafeMBT is an academic, recently proposed, and potentially innovative model-based testing process, which needs compelling arguments to be adopted for the development of aeronautical software. To reduce the gap between industrial settings and academic settings, in this paper, we adopt the safety case-based approach and we explain how to semi- automatically derive means for compliance, aimed at arguing Fail- SafeMBT’s compliance. Our focus is limited to the Verification Planning Process and we contribute to partially justify the adequacy of Fail-SafeMBT to act as process evidence by creating fragments of compelling arguments. To do that, we first manually check if Fail-SafeMBT includes DO-178C/DO-331-compliant process elements, then we model Fail-SafeMBT in compliance with Software Process Engineering Meta-model 2.0, then, we derive process-based arguments from the Fail-SafeMBT process model by using MDSafeCer, the recently introduced Model Driven Safety Certification method. By doing so, we provide a threefold contribution: we pioneer the interpretation of DO-331 in academic settings, we validate MDSafeCer in the avionics domain and we strengthen Fail-SafeMBT by providing suggestions aimed at increasing its maturity level.

Bibtex

@inproceedings{Gallina4458,
author = {Barbara Gallina and Anneliese Andrews},
title = {Deriving Verification-related Means of Compliance for a Model-based Testing Process},
month = {December},
year = {2016},
booktitle = {35th Digital Avionics Systems Conference},
publisher = {IEEE},
url = {http://www.es.mdu.se/publications/4458-}
}