You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Automatic Quality of Service Control in Multi-core Systems using Cache Partitioning

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

26th IEEE International Conference on Emerging Technologies and Factory Automation


Abstract

In this paper, we present a last-level cache partitioning controller for multi-core systems. Our objective is to control the Quality of Service (QoS) of applications in multi-core systems by monitoring run-time performance and continuously re-sizing cache partition sizes according to the applications' needs. We discuss two different use-cases; one that promotes application fairness and another one that prioritizes applications according to the system engineers' desired execution behavior. We display the performance drawbacks of maintaining a fair schedule for all system tasks and its performance implications for system applications. We, therefore, implement a second control algorithm that enforces cache partition assignments according to user-defined priorities rather than system fairness. Our experiments reveal that it is possible, with non-instrusive (0.3-0.7% CPU utilization) cache controlling measures, to increase performance according to setpoints and maintain the QoS for specific applications in an over-saturated system.

Bibtex

@inproceedings{Danielsson6290,
author = {Jakob Danielsson and Tiberiu Seceleanu and Marcus J{\"a}gemar and Moris Behnam and Mikael Sj{\"o}din},
title = {Automatic Quality of Service Control in Multi-core Systems using Cache Partitioning},
month = {October},
year = {2021},
booktitle = {26th IEEE International Conference on Emerging Technologies and Factory Automation},
url = {http://www.es.mdh.se/publications/6290-}
}