You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact

Using Segmentation to Improve Schedulability of RRA-based NoCs with Mixed Traffic

Publication Type:

Conference/Workshop Paper


22nd Asia and South Pacific Design Automation Conference


Network-on-Chip (NoC) is the interconnect of choice for many- core processors and system-on-chips in general. Most of the exist- ing NoC designs focus on the performance with respect to average throughput, which makes them less applicable for real-time appli- cations especially when applications have hard timing requirements on the worst-case scenarios. In this paper, we focus on a Round- Robin Arbitration (RRA) based wormhole-switched NoC which is a common architecture used in most of the existing implementa- tions. We propose a novel segmentation algorithm targeting RRA- based NoCs in order to improve the schedulability of real-time traf- fic without modifying the hardware architecture. Additionally, we also address the problem of transmitting both real-time traffic and best-effort traffic in the same NoC. The proposed solutions aim to provide timing guarantees to real-time traffic and achieve low la- tency for best-effort traffic. According to the evaluation results, the proposed segmentation solution can significantly improve the schedulability of the whole network.


author = {Meng Liu and Matthias Becker and Moris Behnam and Thomas Nolte},
title = {Using Segmentation to Improve Schedulability of RRA-based NoCs with Mixed Traffic},
volume = {22},
month = {January},
year = {2017},
booktitle = {22nd Asia and South Pacific Design Automation Conference},
url = {}