You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Machine Learning to Guide Performance Testing: An Autonomous Test Framework

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

ICST Workshop on Testing Extra-Functional Properties and Quality Characteristics of Software Systems


Abstract

Satisfying performance requirements is of great importance for performance-critical software systems. Performance analysis to provide an estimation of performance indices and ascertain whether the requirements are met is essential for achieving this target. Model-based analysis as a common approach might provide useful information but inferring a precise performance model is challenging, especially for complex systems. Performance testing is considered as a dynamic approach for doing performance analysis. In this work-in-progress paper, we propose a self-adaptive learning-based test framework which learns how to apply stress testing as one aspect of performance testing on various software systems to find the performance breaking point. It learns the optimal policy of generating stress test cases for different types of software systems, then replays the learned policy to generate the test cases with less required effort. Our study indicates that the proposed learning-based framework could be applied to different types of software systems and guides towards autonomous performance testing.

Bibtex

@inproceedings{Helali Moghadam5442,
author = {Mahshid Helali Moghadam and Mehrdad Saadatmand and Markus Borg and Markus Bohlin and Bj{\"o}rn Lisper},
title = {Machine Learning to Guide Performance Testing: An Autonomous Test Framework},
month = {April},
year = {2019},
booktitle = { ICST Workshop on Testing Extra-Functional Properties and Quality Characteristics of Software Systems},
url = {http://www.es.mdh.se/publications/5442-}
}