You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Multiprocessor Fixed Priority Scheduling with Limited Preemptions

Fulltext:


Publication Type:

Conference/Workshop Paper

Venue:

The 23rd International Conference on Real-Time Networks and Systems


Abstract

Challenges associated with allowing preemptions and migrations are compounded in multicore systems, particularly under global scheduling policies, because of the potentially high overheads. For example, multiple levels of cache greatly increase preemption and migration related overheads as well as the difficulty involved in accurately accounting for them, leading to substantially inflated worst-case execution times. Preemption and migrations related overheads can be significantly reduced, both in number and in size, by using fixed preemption points in the tasks' code; thus dividing each task into a series of non-preemptive regions. This leads to an additional consideration in the scheduling policy. When a high priority task is released and all of the processors are executing non-preemptive regions of lower priority tasks, then there is a choice to be made in terms of how to manage the next preemption. With an eager approach the first lower priority task to reach a preemption point is preempted even if it is not the lowest priority running task. Alternatively, with a lazy approach, preemption is delayed until the lowest priority currently running task reaches its next preemption point.In this paper, we show that under global fixed priority scheduling with eager preemptions each task suffers from at most a single priority inversion each time it resumes execution. Building on this observation, we derive a new response time based schedulability test for tasks with fixed preemption points. Experimental evaluations show that global fixed priority scheduling with eager preemptions is significantly more effective than with lazy preemption using link based scheduling in terms of task set schedulability.

Bibtex

@inproceedings{Thekkilakattil4034,
author = {Abhilash Thekkilakattil and Rob Davis and Radu Dobrin and Sasikumar Punnekkat and Marko Bertogna},
title = {Multiprocessor Fixed Priority Scheduling with Limited Preemptions},
month = {November},
year = {2015},
booktitle = {The 23rd International Conference on Real-Time Networks and Systems},
url = {http://www.es.mdh.se/publications/4034-}
}