You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

A Model-Checking-Based Framework For Analyzing Ambient Assisted Living Solutions

Fulltext:


Publication Type:

Report - MRTC

Publisher:

Mälardalen Real-Time Research Centre, Mälardalen University

ISRN:

MDH-MRTC-322/2018-1-SE


Abstract

Since modern ambient assisted living solutions integrate a multitude of assisted-living functionalities within a common design framework, some are safety-critical, it is desirable that these systems are analyzed already at their design stage to detect possible errors. To achieve this, one needs suitable architectures that support the seamless design of the integrated assisted-living functions, as well as capabilities for the formal modeling and analysis of the architecture. In this paper, we attempt to address this need, by proposing a generic integrated ambient assisted living system architecture, consisting of sensors, data-collector, local and cloud processing schemes, and an intelligent decision support system, which can be easily extended to suite specific architecture categories. Our solution is customizable, therefore, we show three instantiations of the generic model, as simple, intermediate and complex configuration, respectively, and show how to analyze the first and third categories by model checking. Our approach starts by specifying the architecture, using an architecture description language, in our case, the Architecture Analysis and Design Language that can also account for the probabilistic behavior of such systems. To enable formal analysis, we describe the semantics of the simple and complex categories as stochastic timed automata. The former we model check exhaustively with UPPAAL, whereas for the latter we employ statistical model checking using UPPAAL SMC, the statistical extension of UPPAAL, for scalability reasons.

Bibtex

@techreport{Kunnappilly5125,
author = {Ashalatha Kunnappilly and Raluca Marinescu and Cristina Seceleanu},
title = {A Model-Checking-Based Framework For Analyzing Ambient Assisted Living Solutions},
month = {March},
year = {2019},
publisher = {M{\"a}lardalen Real-Time Research Centre, M{\"a}lardalen University},
url = {http://www.es.mdh.se/publications/5125-}
}